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Progress in 3D Tomographic Cloud Reconstruction, Part 1*:

MISR’s perspective on the “hidden zone”
inside opaque convective clouds

Linda Forster, JPL/Caltech, Pasadena & Ludwig-Maximilian-University, Munich
Anthony B. Davis, JPL/Caltech, Pasadena
Bernhard Mayer, Ludwig-Maximilian-University, Munich

* For Part 2 of this progress report, see poster by A.B. Davis et al.



3D tomographic cloud reconstruction
A. Levis et al. (2015, 2017): multi-angle AirMSPI observations

» Reconstruction treated as a large
inverse problem
* using “surrogate” forward
model methodology

» 3D radiative transfer equation as
forward model
« using SHDOM as solver
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3D tomographic cloud reconstruction
A. Levis et al. (2015, 2017): multi-angle AirMSPI observations
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» First demonstrated on two model clouds generated with JPL
LES, then applied to AirMSPI observations of a real cloud
« 20 m spatial resolution
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3D tomographic cloud reconstruction
Going from airborne to space-based observations

AirMSP| on ER2 MISR on TERRA

« Adapt tomographic cloud reconstruction method from airborne (~20 m pixels) to
satellite observations (~275 m pixels).

« Challenges:
— Unresolved spatial variability of cloud microphysics
— Optically thick cloud volumes inside MISR pixels
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3D tomographic cloud reconstruction
From air-borne to space-borne observations

AirMSP| on ER2 MISR on TERRA

« Adapt tomographic cloud reconstruction method from airborne (~20 m pixels) to
satellite observations (~275 m pixels).

- Develop 3D RT forward model with efficient transport deep inside optically thick
clouds.

— Possible candidate: photon diffusion theory?

- Inform inverse problem solver about how to not waste time on spatial details deep
inside such clouds.
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The “hidden zone”?
A. Levis et al. (2015, 2017): multi-angle AirMSPI observations
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The “hidden zone”:
Photons scattered in and out of this region in the cloud do not contribute significant
information about microphysical details to the observed radiances
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Is the “hidden zone” related to the “diffusion
domain” discussed in the literature?

« Twomey et al. 1967: T = 10, Deirmendjian 1969: T = 16, van de Hulst 1980: T = 14

. Bohren et al. 1994: At What Optical Thickness Does a Cioud Completely Obscure the Sun?

CRrAIG F. BOHREN, JEFFREY R. LINSKENS, AND MICHAEL E. CHURMA
Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

6 October 1993 and 5 August 1994

Determination of the Spectral Absorption of Solar Radiation by Marine Stratocumulus
Clouds from Airborne Measurements within Clouds

+ King et al. 1989: MICHAEL D. KING
Laboratory for Atmospheres, Goddard Space Flight Center, NASA, Greenbelt, Maryland

LAWRENCE F. RADKE AND PETER V. HOBBS
Department of Atmospheric Sciences, University of Washington, Seattle, Washington
{Manuscript received 8 June 1989, in final form 9 November 1989)
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Is the “hidden zone” related to the “diffusion
domain” discussed in the literature?

Twomey et al. 1967: T = 10, Deirmendjian 1969: T = 16, van de Hulst 1980: T = 14

become too diffuse to point to?

Bohren et al. 1994: When has the direct solar source
- T = 10 from illuminated boundary

King et al. 1989:
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Is the “hidden zone” related to the “diffusion
domain” discussed in the literature?

« Twomey et al. 1967: T = 10, Deirmendjian 1969: T = 16, van de Hulst 1980: T = 14

* Bohren et al. 1994: When has the direct solar source
become too diffuse to point to?
- T = 10 from illuminated boundary

4 When can the diffuse radiation field be )
treated by photon diffusion theory?

- t = 10 (to 15) below aircraft, hence in a
significant portion of stratocumulus clouds
that are only 20 (to 30) in total optical depth.
\_ Maybe T = 2 (to 3) from each boundary? Y,

* King et al. 1989:
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Two related questions

4 N

1. How can we define the “hidden zone” inside clouds
and where is it?

2. To what extent do photons scattered from this “hidden
zone” deep inside the cloud contribute to MISR multi-

angle observations?

\_ J
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Locating the "hidden zone”
from an airplane window
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Locating the ’hidden zone”
2D Koch cloud

Koch curve Mapped to rectangular grid
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Locating the "hidden zone”

2D Koch cloud
Teenter = 20, Aa: —26.2° /
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Locating the ’hidden zone”
2D Koch cloud, all 9 MISR cameras

Tcenter = 20, Tthres = 5
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Locating the ’hidden zone”
2D Koch cloud, all 9 MISR cameras

Tcenter = 20, Tthres = 5
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The "hidden zone” from MISR’s perspective
2D Koch cloud
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The "hidden zone” from MISR’s perspective
2D Koch cloud
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The "hidden zone” from MISR’s perspective

2D Koch cloud
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence

“Turbulence” is represented by a fractal Brownian surface:
Hurst exponent H = 1/3; 1025 x 1026 grid.
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence

Tcenter — 20, Tthres = 5
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence

Tcenter — 20, Tthres = 5

. B
2

<
ey
R :
4 1o SR "
- 3 -

. i

z [km]
Optical distance

}“1 i- 42 :
'-ob"‘“ <y f" "V’Jq"' %

0

245 25.0 255 26.0 26.5 27.0 27.5 28.0 28.5
x [km]

13th February 2019 27 jpl.nasa.gov



The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence

Teenter = 40, Ttnres = 5
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The "hidden zone” from MISR’s perspective
2D Koch cloud with high-resolution turbulence
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Conclusions

KThe Radiative transfer simulations showed that \

photons scattered from optical distances T = 5(3)
inside the cloud do not significantly contribute to
MISR’s multi-angle observations - “hidden zone”.

« Changes in the distribution of the liquid water content
(LWC) inside the “hidden zone” resulted in variations
of the MISR radiances of <5%, as long as mean and
variance and correlations of the LWC were

\ preserved. /
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Outlook

Klnvestigate efficient methods to perform radiative \
transfer inside “hidden zone” to enable practical
tomographic cloud reconstruction from MISR
observations.

« Perform sensitivity studies of “hidden zone” for more
realistic 3D clouds, specifically, from LES simulations.

* Develop a method to predict location of “hidden zone”
\in the 3D grid from MISR multi-angle observations. /
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Jet Propulsion Laboratory
California Institute of Technology

Thank you! )

Questions?

~
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